Tag Archives: batteries

It’s the IRA’s First Birthday. Here Are Five Areas Where Progress Is Piling Up.

The Inflation Reduction Act promised an unprecedented wave of clean energy investment. One year in, here’s where we’re seeing progress.

Originally published on August 16, 2023 at RMI.org: https://rmi.org/its-the-iras-first-birthday-here-are-five-areas-where-progress-is-piling-up/

By  Hannah Perkins,  Adam Aston,  Vindhya Tripathi

“Unprecedented.”  “A landmark.” “The Super Bowl of clean energy.”

Those are just a few of the superlatives that hit the headlines when the Inflation Reduction Act (IRA) was signed into law on August 16, 2022.

The act’s passage came as a surprise both politically — emphasizing lower energy costs helped the bill clear years of oppositional brinksmanship — and for its unprecedented scale. Toward the goal of shifting the US grid to 80 percent clean electricity and cutting climate pollution by 40 percent by 2030, the act mobilized an estimated $370 billion in federal incentives.

A year in, the early fanfare has resolved into unprecedented progress. Twelve months after passage, the IRA’s impact — in industrial investment, new jobs, and other economic activity — already exceeds early estimates. To date, we have seen:

  • $278 billion announced in new private clean energy investments.
  • Projects announced accounting for 170,000 new jobs.
  • The availability of $70 billion was announced in grants, rebates, and other non-loan funding.

And while politics could yet alter its trajectory, the impact to date has been weighted towards traditionally Republican-leaning regions, a bias which may ensure its longevity in years to come. Given the rapid uptake, Goldman Sachs earlier this year upped their estimate of public IRA investment over the next decade to more than $1 trillion, with private sector spending potentially a multiple of that.

By design, incentives are drawing this investment widely across the United States, with a focus on disadvantaged, low-income, and energy communities. RMI estimates that, if they take full advantage of the IRA and adopt clean energy at the pace and scale needed to meet national climate targets, by 2030, each state could see:

  • Cumulative investment of from $1 billion (for smaller states) up to $130 billion (for the largest beneficiaries).
  • Per capita new investment of $1,500 to $12,000.
  • The creation of 2,000 to 100,000 new jobs.
  • Lower healthcare costs and impacts by avoiding 4,000 to 300,000 negative health outcomes avoided.

On the ground, IRA incentives have already translated into a rush of announcements and projects spanning regions and industries, including both legacy and cleantech sectors. On the advent of the IRA’s first birthday, here’s a rundown highlighting the breadth of this progress.

Manufacturing boom

Nourished by the IRA, manufacturing announcements have mushroomed across the country. While heavy on electric vehicles (EVs) and batteries, the greenfield factories and upgrades also include wind and solar sites, along with semiconductors, electronics, and others. The new capacity promises to boost US energy security and independence by reshoring key supply chains and strengthening US competitiveness as global leader in clean energy technologies. To date, 272 new clean energy projects have been announced, including:

  • 91 new battery manufacturing sites.
  • 65 new or expanded EV manufacturing facilities.
  • 84 wind and solar manufacturing announcements.
Electrifying transportation

Globally, sales of internal combustion vehicles peaked in 2017, and are now in long-term decline, according to Bloomberg NEF. As older cars and trucks are retired, the world’s combustion vehicle fleet will start to shrink after 2025. In the United States, the IRA is supercharging this shift, with incentives that span from electric school buses to battery factories and new charging infrastructure:

  • For consumers, the IRA offers rebates on new and used electric vehicles, peaking at $7,500. Juiced by this incentive, US sales of new EV passenger cars are expected to surge by 50 percent in 2023 to over 1.5 million, the White House estimates. The incentives will help heavier vehicle classes electrify more quickly too. By 2032, RMI estimates that the share of EV sales using IRA credits will be close to 100 percent for Class 1–3 commercial fleets, and 84 percent for medium- and heavy-duty trucks.
  • To supply incentive-amped demand, global automakers such as GM and Ford and their battery partners are leveraging the act’s $45-per-kilowatt battery production tax credit to turbocharge construction of new plants across a “battery belt,” stretching from Michigan to Georgia (see map, in above section). Increased output of US-made batteries is, in turn, helping carmakers boost output of popular EVs, such as Ford’s F-150 Lighting electric pickup (image, top of page).
  • IRA also provides funding for the federal government to lead by example. The US Postal Service(USPS) received $3 billion for clean vehicles. And starting in 2026 the post office will buy only EVs.
  • RMI analysis shows IRA credits will help electric passenger cars and light-duty trucks achieve total cost of ownership (TCO) parity with ICE vehicles between 2023 and 2025. Without the IRA credits, EVs would have reached TCO parity with ICE vehicles between 2024 and 2027.
Total Cost of Ownership parity for EVs and ICE passenger cars chart
Greening buildings

Buildings account for around a third of US emissions, making it one of our largest, most complex sectors to decarbonize given the age, diversity, and costs to retrofit America’s stock of millions of buildings. The IRA is tackling this challenge on multiple fronts:

  • Guidance on funding for the Home Energy Rebate programs is being rolled out and has generous carve-outs for low-income households. States are currently designing programs based on this guidance to help consumers save money and live more comfortably. The first state programs could be rolled out as early as the end of this year.
  • Appliance efficiency standard programs like CEE and ENERGY STAR, which some IRA incentive programs rely upon, continue to align with decarbonization efforts that ensure the most efficient HVAC systems and appliances are installed in homes across the country.
  • New HUD programs prioritize healthy, efficient, electrified retrofits for affordable housing HVAC and appliances; more than $800 million is available and funding from these programs can’t go towards in-unit fossil fuel appliances.
  • The General Services Administration (GSA) — which oversees the federal government’s vast portfolio of buildings and properties — is using $1 billion of IRA funding to shift federal facilities towards electrification, with near-term plans to electrify over 100 buildings, including one of their largest, the Ronald Reagan Building in DC.
Decarbonizing electricity

Clean electricity is essential to decarbonize the wider US economy, whether to charge EVs and power greening buildings (see above), or to decarbonize industry (below). The shift is advancing steadily. In the first five months of 2023, wind and solar produced more power than coal, a first for the US. The IRA is continuing this shift:

  • Commercial solar is on pace to grow by 12 percent in 2023, and over the next seven years, we expect twice as much wind, solar, and battery deployment as there would have been absent the IRA.
  • The IRA-linked credits reinforce renewable powers’ long-standing price edge over gas- and coal-fired generation, an advantage which endures despite some demand-led inflation in the price for new solar and wind.
  • With IRA funding, USDA is making the largest investment in rural electrification since the New Deal — nearly $11 billion for rural electric co-ops. In particular, the Empowering Rural America (New ERA) program gives rural electric cooperatives an unprecedented opportunity to modernize aging grid infrastructure to maintain reliability, lowering costs for members and reduce emissions.
  • Michigan’s largest investor-owned utility, DTE, filed the first resource plan in the country that attempts to demonstrate the IRA’s intended changes to the economics of clean energy, projecting $500 million in savings for customers over 20 years. The proposal includes building 15 gigawatts (GW) of new solar and wind, improving DTE’s exploration of battery pilots, and moving up the retirement of the Monroe Power Plant – the fourth largest coal plant in the US.
  • Energy Infrastructure Reinvestment announced funding for solar and storage in Puerto Rico, replacing a retired coal power plant.
Transforming industry

Steel, cement, petrochemicals, and other hard-to-abate heavy industries pose a special challenge to decarbonize. For now, many rely on raw materials and/or high temperatures that only fossil fuels can affordably deliver at scale. The IRA aims to scale up affordable alternatives — such as hydrogen which, if implemented cleanly, offers a clean alternative — along with greener raw materials and recycling options:

  • Incentives for industry and hydrogen have had a big impact on economic analyses. Many projects have been announced, focused on advancing US global competitiveness. Policies are meant to drive applications and interest in first-of-a-kind projects and hubs demonstrating industrial decarbonization opportunities.
  • From the IRA and Bipartisan Infrastructure Law, the Office of Clean Energy Demonstrations (OCED) has been allocated $6.3 billion for Industrial Demo Grants. OCED funds will de-risk technologies that are not yet demonstrated on a commercial scale.
  • A range of tax credits is being clarified that will spark investment. For hydrogen, guidance on the Hydrogen Production Tax Credit (45V) is forthcoming. And the  Advanced Manufacturing Production Credit (45X) will unlock a major buildout of the lithium-ion battery supply chain, stationary storage manufacturing, and solar and wind supply chains.
  • Likewise, guidance has been released and the first round of applications reviewed for the Advanced Energy Project Credit (48C), which offers $4 billion for projects that expand clean energy manufacturing and recycling, expand critical minerals refining, processing, and recycling, and reduce emissions at industrial facilities. The U.S. Energy Department’s roster of funding opportunities, among other things, prioritizes heat pump manufacturing, signaling a clear shift towards supporting beneficial electrification.
Finance

The act has also unlocked financing via the reform of tax credits and innovative financing that prioritizes climate-friendly investment in historically disadvantaged communities:

  • For the first time, the IRA widens access to investment and production tax credits (ITCs and PTCs) for non-taxable entities, such as states, local governments, coops, and non-profits that in the past had little or no way to use the credits to finance new renewables. Historically, constrained demand for tax credits has limited the scale of ITC and PTC financing. For instance, RMI analysis of 2019 financial disclosures found that US investor-owned utilities had aggregate tax liabilities sufficient to build less than 4 GW of new solar and storage per year, barely enough capacity to replace one or two coal plants. Later this year, Treasury will release final guidance for organizations to tap into these direct pay and transferability options.
  • The Notices of Funding Opportunity (NOFOR) for the Greenhouse Gas Reduction Fund’s three grant competitions are now live, with deadlines in September and October. These grants will be disbursed in 2024, capitalizing a national network of clean energy financiers who will be focused on mobilizing private capital at scale to fund emissions-reducing projects, especially in low-income and historically disadvantaged communities.
Looking ahead

The IRA is not only the most ambitious climate bill in US history. It is one of the most ambitious and complex efforts at economic and industrial reinvestment ever. By these standards, the progress the act has already made is enormous, but years of work — and meaningful obstacles — remain to fully deploy the IRA at the pace and scale needed to reach climate targets.

Chief among these obstacles is permitting. As project timelines stretch into the years — whether to connect renewables projects onto the grid, or site new critical mining and industrial facilities — streamlining the thicket of overlapping regulatory and administrative approvals is emerging as a make-or-break challenge for the US energy transition.

Despite challenges in implementation, the hundreds of announced projects and hundreds of billions of dollars in investment show the energy transition is out of the starting gate and gaining speed.

The challenge is increasingly shifting to subnational players — such as states and cities as well as businesses and non-profits — to mobilize the funding the IRA has unlocked. Ultimately, the IRA’s full potential will be limited only by our own ambition to realize a clean energy future.

How to value solar plus storage | GREENBIZ

In the wake of California’s summer of wildfires, blackouts and planned outages, many consumers and businesses are clamoring for more resilient options. The crisis has turbocharged interest in systems that deliver power even when the grid is down. Solar plus storage is fast emerging as a top choice, both at scale on the grid and also “behind the meter,” installed in a home, apartment or commercial building. 

“Solar plus battery storage can provide value in two ways: first, energy reliability for customers during emergency power outages, and second, during non-emergencies, to help the grid balance demand and generation,” said Dawn Weisz, chief executive of California utility MCE, during a breakout session at last week’s virtual VERGE 20 event. 

Founded in 2008 as California’s first not-for-profit, community choice aggregation program, MCE today serves over 1 million residents and businesses in four San Francisco Bay area counties: Contra Costa; Marin; Napa; and Solano.

When it comes to reliability, solar-with-storage systems offer the ability to charge a battery that can keep the power on during an outage. “It’s worth a lot to know you can keep your power on, especially for customers that have medical needs that rely on electricity,” Weisz said. “And those that need electricity for heating, cooling, and to keep food fresh.” 

Solar plus storage also helps the wider grid and environment by letting consumers shift the time when they consume solar power: by storing solar energy when it’s abundant during the day, and using it at night, in place of power generated from fossil fuels.

“Behind-the-meter storage lets you optimize solar consumption, taking up excess output during the day, and discharging it in the evening, when demand spikes,” explained Michael Norbeck, director of grid services business development at Sunrun, a San Francisco-based provider of residential solar systems and services. 

Indeed, absent storage, too much solar can become a challenge, when supply exceeds demand. In California, “We started to see so much solar going onto the grid that our ability to use it was diminishing,” Weisz said. 

In extreme cases, that can mean curtailing output: switching off the excess power flowing from solar farms. Storage can put that excess output to good use, flowing it back onto the grid when needed. “It’s in California’s best interest to be sure we’re using as much of those electrons as we can,” she said. “More batteries will help eliminate curtailment.” 

It’s no secret that the cost of solar energy has plummeted. In an October analysis of the levelized cost of energy — a measure that blends the full cost to finance, build and fuel an energy system over time — investment bank Lazard calculated that large-scale grid solar beats all fossil fuel options on cost, even absent any subsidies. Even rooftop solar, installed on homes or commercial buildings, is close to par with power from conventional sources such as natural gas peaker plants, coal and nuclear. 

Meanwhile, battery costs have followed a similar downward path. Average market prices for battery packs plunged by 87 percent in real terms in the decade to 2019, reports Bloomberg New Energy Finance (BNEF).

MCE commercial battery storage project in partnership with Tesla and the College of Marin. The installation is estimated to save the college $10,000 per month on electricity bills. Courtesy of MCE.

Yet even as prices continue to fall, making these systems accessible to more consumers and businesses, concerns persist about equal access. Weisz noted that even as prices for combined systems fall, the market is following in the footsteps of early solar, when panels were installed first by wealthy customers but lower-income customers couldn’t afford the systems. 

As a not-for-profit dedicated to community energy services, MCE has tapped state subsidy programs, grants and other funding sources to extend the benefit of solar plus storage. “We don’t want to replicate the same patterns of disenfranchising our lower-income customers,” Weisz said. 

For its part, Sunrun has pioneered a pricing strategy that often results in power prices below the grid average, thereby reducing customers’ long-term costs. For instance, to minimize both installation costs and monthly fees, Sunrun’s most popular plan, BrightSave Monthly, leases panels to homeowners for $0 down, paid for via a long-term, stable price. 

With wildfires emerging as a nearly year-round threat to western states, the resilience that solar plus storage offers is growing in importance. Sunrun’s systems have grown increasingly responsive to remote management. When grid conditions grow unstable, Sunrun’s systems can island themselves and call on a reserve portion of the battery to support critical needs. 

Panels recharge batteries during the day, which can then discharge at night, even when blackouts can stretch from hours to days or even weeks. “During the wildfires last year, we had a customer on uninterrupted power for over 142 consecutive hours,” or nearly six days, Norbeck said. 

Originally published in Greenbiz.com.

Can smarter storage solve our energy woes? | Ensia

Notrees Windpower Project battery storage unit

A new generation of technology focuses on supplying a midsize dollop of power exactly when and where it’s needed most.

Largely out of sight, tucked into building basements and stashed in garages, a new generation of energy storage technology is poised to help our aging grid not only avoid outages, but enable vast new flows of renewable power, all while saving some serious money. Call it the smart storage revolution.

California is ground zero for this trend. Across the Golden State, costs for electric power are high, renewables are multiplying, and key grid links are overloaded. But rather than rely on longstanding industry practice to fix grid problems by building more power plants or transmission lines, California regulators are encouraging customers and utilities to innovate.

At two InterContinental Hotels in the Bay Area, new storage technology is helping to reconcile these many challenges. The hotels’ secret weapon is a pair of fridge-sized boxes loaded with lithium-ion (Li-ion) batteries. Day to day, they’re able to cut the hotels’ electricity costs by up to 15 percent.

They do so by taking advantage of California’s complex power pricing regime. Smart software recharges the batteries when power is cheap, typically at night. When rates head up, the system seamlessly switches part or all of the hotels’ load to the batteries, thereby avoiding the need to purchase power at the costliest times, explains Salim Khan, CEO of Stem, the Millbrae, Calif.–based startup that built the systems.

Stem energy storage units

New storage technology at two InterContinental Hotels in the Bay Area cuts the hotels’ electricity costs. Photo courtesy of Stem.

The technology helps the broader grid, too, by reducing the risk of outages. Grid gurus call it “peak shaving.” It’s a nifty trick in which stored energy displaces active generation during key moments. On the hottest days, even a tiny sliver of this kind of savings can make the difference between a blackout and business as usual.

For now, the InterContinental Hotels’ storage units are an exception, but they’re set to become a rule. In February, California became the first state to order investment in smart grid storage, initially calling for 50 megawatts (MW) in the Los Angeles basin area.

The rule doesn’t detail what kind of storage to deploy. Rather, it aims to spark more market innovations, like Stem’s, that improve grid performance while saving money. “This is a huge signal to the market that storage is ready to play” on par with conventional power plants, says Janice Lin, executive director of the California Energy Storage Alliance.

Goldilocks Storage

To be sure, storing electricity isn’t anything new. Cell phones, e-readers and laptops, all integral to daily life, let us use a little of the grid’s generation on the go.

Storage is well established at the macro scale, too. A little-known backbone of the U.S. grid is more than 20,000 MW — equal to the capacity of some 22 nuclear power plants — of “pumped hydro” storage. Scattered at scores of remote sites around the U.S., these systems comprise some 99 percent of today’s storage capacity.

At night, utilities use low-cost energy to pump water from a lower reservoir uphill to a higher basin. The next day, as demand peaks, the water is sent back downhill to generate power. Think of pumped hydro as the biggest battery we have. It’s capable of delivering city-sized volumes of power for hours in a row. That’s why grid operators are pushing to install thousands more megawatts of capacity.

But, as California is finding, on today’s grid, the sweet spot for smart storage is at scales somewhere between these two extremes. Much bigger than handheld phone batteries, but smaller than gargantuan lakes of hydropower, smarter storage solutions can be an ideal fit for critical niches where a midsize dollop of power, supplied for minutes or hours, is all that’s needed.

Sharing California’s Problems

California’s problems aren’t unique. Similar problems are surfacing across the U.S.

Transmission constraints. L.A.’s biggest problem isn’t inadequate supply of power — most of the time there’s enough juice available from regional generators. The real problem is funneling all that power through aged transmission lines that can’t handle the load.

In most markets installing new transmission cables, or even upgrading existing lines, is a no-go. As populations have grown, the cost of new grid links has skyrocketed; likewise, public patience with big construction projects is scant. New York City and Long Island face similar transmission constraints.

Storage offers a tidy solution. At night, utilities can use existing transmission lines to fill up batteries positioned near demand hot spots. Later, if demand peaks beyond power lines’ ability, batteries can fill in the necessary excess. “Energy storage helps you do more with less infrastructure,” says Bill Acker, executive director of NY-BEST, an energy storage technology consortium based in Albany, N.Y.

Waste and reliability. To meet peak levels of demand, the grid has been massively overbuilt. The Electric Power Research Institute estimates that one-quarter of all high-voltage distribution lines and about one-tenth of all power plants are used, on average, just 5 percent of the time, or 33 hours per month.

That means hundreds of billions of dollars in assets go unused the vast majority of the time. Utilities are recognizing that carefully targeted storage can cost-effectively replace these least-used assets, says Haresh Kamath, program manager for energy storage at EPRI.

“We’re not using most of our assets most of the time,” says Johannes Rittershausen, managing director of Convergent Energy + Power, a developer of energy storage assets. “The challenge is to find ways to address infrastructure needs most efficiently and at the least cost to end users. A well-designed energy storage project can do just that by taking advantage of slack capacity in targeted locations.

“The U.S. grid will require massive investment over the coming decades as infrastructure ages and our society’s peak electricity demand continues to grow,” he adds.

Renewables’ risks. As a rule of thumb, grid experts believe that when intermittent power sources such as wind and solar surpass 20 percent, grid instability soars. And where that threshold once seemed remote, it is routinely being surpassed in many regions.

Storage boosts the value of renewables in two ways: by stepping in to provide power when renewable output drops off, and by mopping up excess output when solar or wind power exceed demand.

In February of this year, wind output set a record in Texas, briefly cranking out more than 28 percent of the power demands of the Electric Reliability Council of Texas, which manages the flow of about 85 percent of the state’s electric power. California’s goals for renewables are the nation’s highest, with a mandate to hit 33 percent by 2020. Roughly 20 more states, home to the majority of the U.S. population, have set goals of 20 percent or more.

Storage boosts the value of renewables in two ways: by stepping in to provide power when renewable output drops off, and by mopping up excess output when solar or wind power exceed demand.

“For the first time, the growth of renewables means we’re facing unpredictable supply,” says Lin. Demand will also grow less predictable as more electric vehicles come on line. “Plus it’s hard to find locations for new plants or transmission lines,” Lin adds. “Storage speaks to all these problems.”

Top Contenders

A menagerie of exotic new storage technologies — including thermal storage, flywheels and compressed air storage — are developing fast, but haven’t yet achieved commercial-scale viability. For now, advanced battery-based storage is the hottest of the grid’s newcomers, thanks to rapid declines in the price of Li-ion batteries.

Serendipitously, a key impetus for this trend started in the auto sector, where rising sales of battery-packed hybrids and electric vehicles are driving carmakers’ appetites for advanced Li-ion batteries. This is spurring new manufacturing capacity, driving prices down globally. Driven largely by rising demand from car companies, industry and utilities, the global Li-ion market is slated to double over the next four years, to around $24 billion, according to a recent Frost & Sullivan report.

As prices fall, Li-ion batteries are finding new niches. For now, at around $2,000 per kilowatt-hour, battery backup remains too costly for most applications. But they do pencil out for deep-pocketed utilities in key situations, where their ability to deliver large pulses of power is highly valued.

In January, for example, Duke Energy completed a 36 MW energy storage system at its Notrees Windpower Project in West Texas. Designed and installed by Austin-based Xtreme Power with funding from the U.S. Department of Energy, the $44-million system is the world’s largest wind-linked storage unit, made up of thousands Li-ion battery cells.

According to financial service company UBS, the cost of storage dropped by 40 percent over the past two years, and analysts expect the slide to continue, or even accelerate. At around $500 per kWh, EPRI estimates more than 40,000 MW of potential demand will enter the market. At that price point, residential-scale battery backup may become a reality. Pilot trials of such household-scale backup appliances are underway near Sacramento, Calif.

Installed in the garages of 15 solar-powered homes, Li-ion battery packs the size of small file cabinets hold enough juice to supply a few hours of power. The systems are designed to let the homes go off grid during periods of peak demand, saving homeowners money while reducing stress on the network.

And at $250 per kWh, consulting firm McKinsey & Co. predictsautomakers will be able to build electric vehicles that would be competitively priced in comparison to conventional cars, but with much lower fuel costs. With an eye on a future where there’s a Chevy Volt, Nissan Leaf or the like in every garage, utilities and carmakers are beginning to test vehicle-to-grid systems where EVs’ big battery packs are enlisted to back up the grid.

Powering Ahead

Innovative startups and companies from outside the utility sector are leading the shift towards smart storage. It’s not that utilities won’t play a big role here, but historically they tend to follow, says GreenTech Media smart grid analyst Zach Pollock. “Utilities’ adoption of nascent technologies is typically constrained by cautious regulators, conservative cultures and long budget cycles.”

And maybe that’s okay. Smart storage offers a rare opportunity, says Rittershausen. “We can do a project that makes a profit, saves the consumer money and reduces inefficiency,” he adds. “If this is done right it makes sense for investors, end users and utilities too.”

~

Check out the original story here: http://ensia.com/features/can-smarter-storage-solve-our-energy-woes/?viewAll=1