Tag Archives: renewable energy

COP28: What Worked, What Didn’t, and What Next?

The UN climate conference delivered more progress than many anticipated — on cutting methane, funding loss and damage, and tripling renewable energy — but it also neglected major priorities. RMI experts share their take.

Originally published on Dec. 21, 2023 at RMI.org: https://rmi.org/cop28-what-worked-what-didnt-and-what-next/

The 2023 UN climate summit, which wrapped on December 13, delivered progress across several critical global priorities and defied early prognostications that COP28 — hosted by Dubai, in the United Arab Emirates, one of the world’s largest fossil fuel exporters — would bog down in dissent.

On the conference’s first day came a surprise agreement to operationalize the Loss and Damage Fund, a long contentious issue between low-income, low-emissions countries, and wealthy heavy emitters. Soon thereafter came a spate of deals to rapidly lower the leakage of methane, a super-warming gas, from government, NGO, and corporate players.

And on the event’s final day came a historic, unanimous agreement on “transitioning [the world] away from fossil fuels in energy systems… in a just, orderly and equitable manner.” Complementing that milestone: a commitment to triple the world’s capacity of wind, solar, and other renewable energy by 2030, concurrent with a doubling of the pace of energy efficiency gains.

“COP28 has clarified to everyone that the direction of the transition is clear,” said RMI CEO Jon Creyts. “The energy transition is unstoppable.”

Even as the clean energy shift gathers pace, COP28’s final statement also offered a stark reminder of the urgency for faster action. The “global stocktake,” the UN’s inventory of the world’s progress on reducing greenhouse gas emissions, concluded that we are well off track to limit global warming to 1.5°C by 2100, as agreed to in Paris.

To limit warming to the Paris target, emissions would need to fall by 43 percent by 2030, and 60 percent by 2035, relative to 2019 levels. For now, emissions are on track to fall by just 5 percent come 2030, and only if every country’s commitment is met. Consequently, the world remains on a path to heat by up to 2.8°C by the turn of the century, almost twice the 1.5°C goal.

For RMI’s on-the-ground work, COP28’s complex climate diplomacy nets out as a cause for optimism. As never before, the agreement galvanized global governmental consensus in line with many of our long-standing goals, particularly around speeding the shift to cleaner, safer energy, reducing methane, and the just energy transition. At the same time, the agreement did not resolve pressing areas, such as financing, that will be essential to achieve its goals.

Below, RMI experts weigh in on the implications of the conference’s big advances, as well its less covered wins, along with a few misses.

Multiple methane wins

Over 80 times more potent near term than carbon dioxide (CO2) as a warming agent, methane offers huge potential to quickly cut global greenhouse gas emissions. And to keep 1.5. degrees within reach this decade, oil and gas methane leaks must go to near zero. What’s more, the technical solutions are here now, and the economics are highly favorable, with over half of the fixes yielding a profit or zero net cost. RMI Principal TJ Conway highlights COP28’s methane wins.

Oil and gas commitment. Heading into COP28, methane reductions ranked as a top prospect to deliver major progress on emissions reductions. One of the biggest wins in delivering on this promise came with the Oil and Gas Decarbonization Charter (OGDC). Signatories committed to reaching “near zero” methane leakage and flaring by 2030, an ambitious goal under a tight timeline. Beyond its scale, this multistakeholder effort was notable for the buy-in of global oil giants such as BP, ExxonMobil, and Shell, along with national oil companies (NOCs), many of which are otherwise insulated from pressures to set climate goals. NOCs represented a remarkable 60 percent of participants. The US EPA also released stricter regulations on methane emissions.

Building accountability. The bulk of the methane discussions at COP28 focused on the need to accelerate implementation — namely, how to establish accountability mechanisms and metrics to ensure that companies credibly and rapidly meet their OGDC commitments. In coordination with OGDC — and together with Bloomberg Philanthropies, EDF, the IEA, and UNEP via the International Methane Observatory — RMI unveiled a new initiative that will help advance transparency and enforce accountability around claims of methane emissions reductions.

Financing methane reductions delivered another front of progress. The World Bank’s announcement of a new $255 million trust fund through the revamped Global Flaring and Methane Reduction Partnership was welcomed, especially given that many NOCs need technical and financial support. As funding to reduce methane multiplies, financial institutions need more robust ways to track and validate carbon reductions in their lending portfolios;  stronger standards will unlock more funding for reductions. For a fuller explanation of RMI’s work to establish supporting standards for lenders, see “Carbon on balance sheets may go up before they can go down” below.

Curtailing waste methane. Progress on methane extended past the petroleum patch. The waste sector, including solid waste and wastewater, is the third largest contributor to methane emissions, responsible for almost 20 percent of the global total. And as part of COP28, RMI and Clean Air Task Force, with funding support from The Global Methane Hub and Google.org, unveiled the Methane Assessment Platform (WasteMAP), a new, open, online tool that aggregates and maps reported, modeled, and observed waste methane emissions data to help guide reductions.

Scaling green industry

Perfecting clean technologies — from lower-carbon recipes for steel to sustainable aviation fuels — isn’t enough. Industry must also change how it does business, such as developing better ways to finance, buy, and cultivate long-term demand for low-carbon solutions. RMI’s Charlotte Emerson discusses the major initiatives RMI took part in at COP28 to spur these sorts of market-based advances in strategic industries.

Hydrogen. Given its potential to help other heavy-emitting sectors — such as steel and shipping — decarbonize, green hydrogen is a top priority. The Green Hydrogen Catapult launched the report The Value of Green Hydrogen Trade for Europe, at the event Trading Green Hydrogen to Bolster Energy Security, which focused on the value of renewable hydrogen exports in promoting global energy security. The Green Hydrogen Catapult signed a joint declaration in partnership with UN High-Level Climate Champions on the Responsible Deployment of Renewables-Based Hydrogen, addressing the need for mutual recognition of a broad range of recommendations guiding the deployment of renewables-based hydrogen around the world.

Steel. RMI co-hosted an event with the World Economic Forum’s First Movers Coalition and corporations across the industrial supply chain to speed the decarbonization of heavy industry. A centerpiece of this push, RMI’s Sustainable Steel Buyers Platform, demonstrates how connecting ambitious buyers and suppliers through demand-side measures can accelerate the shift to low-emissions steel. RMI also signed the Steel Standards Principles, an effort to harmonize the methodology and standards to define lower emissions steel.

Shipping. The UN High-Level Climate Champions and RMI’s Green Hydrogen Catapult facilitated the Green Hydrogen and Green Shipping Call to Action, committing 30 shipping sector actors to firm targets to use nearly 11 million tons of renewables-based hydrogen fuel adoption this decade — nearly 10 percent of all fuel consumption. A related event, Clearing the Last Mile: Opportunities for Supplying Zero-Emission Fuels at Ports, unveiled initial findings on the cost and ability of key ports to supply the zero-emission shipping fuels of the future by 2030 from a forthcoming study undertaken by RMI and Global Maritime Forum under the flag of the Zero-Emission Shipping Mission.

Aviation. RMI, together with the Environmental Defense Fund and the Sustainable Aviation Buyers Alliance (SABA) launched the SAFc Registry, a not-for-profit sustainable aviation fuel certificate registry that will transparently and rigorously connect corporate aviation customers to clean fuel deployment, reducing emissions from air travel and air freight.

Aluminum. Financial institutions play an essential behind-the-scenes role in funding investment in greener options. Consider aluminum, which is playing a rising role in the energy transition as a lightweight, highly recyclable material in everything from wind turbine components to solar panel framing. To encourage a shift toward production of low-emissions aluminum, RMI unveiled the Sustainable Aluminum Finance Framework a tool for banks to benchmark their aluminum clients and collaboratively develop decarbonization pathways with industry.

Prioritizing, and funding, a just energy transition

The push to gather funding to compensate poor, low-emitting countries for harm they are experiencing from climate change has been contentious and opposed for 30 years at past COPs by heavy emitters, including the United States. COP28 delivered laudable progress in funding commitments. Above all, improved and expedited access to climate funds will be critical for the most vulnerable countries. For future COPs, the issue persists as one of the most urgent — and delicate — fronts. RMI Senior Principal Laetitia De Marez explains.

Loss and damage. The push to gather funding to compensate poor, low-emitting countries for harm they are experiencing from climate change has been contentious, opposed at past COPs by heavy emitters, including the United States. COP28 delivered laudable progress in funding commitments. Above all, improved and expedited access to climate funds will be critical for the most vulnerable countries. Many were surprised then, to see COP28’s first day deliver an agreement on the loss and damage fund, with funding and an agreement to house it at the World Bank. Pledges quickly stacked up: Over $700 million has been committed initially, including $17.5 million from Washington, a pledge which, while nominal, marks the end of US oppositionThe tally remains far short of the $100 billion target requested by developing countries, but the establishment of a vehicle is a critical step to bring in ongoing funding and distribute it.

Reforming multilateral development banks. It’s a big step forward. But the financial gap remains considerable compared to the capital needed to fund a fast, yet just, transition. The reform of the multilateral development banks (MDBs, such as the World Bank, Asian Development Bank, and others) must continue and deepen. They need to transition their portfolios, terms, conditions, and policies away from future fossil deals and fully switch to Paris-aligned investment priorities.

Public-private financial collaboration. The climate funds and the MDBs have a critical role to play in mobilizing international and national private sectors by de-risking and aggregating projects in the regions. The imperative is growing to blend public and private sources of capital — a shift that is underway but must be streamlined and scaled (more on this in the next section on global financiers).

Capacity building: Skills, workforce, regulations. International capacity-building support and technology transfer mechanisms to enable the energy transition remain underfunded and undersized. Transitioning energy systems cannot be achieved without a skilled workforce, trained energy leaders, regulators, innovators, and developers.

Defining a better transition. It remains unclear what a just and equitable transition means for different countries: What are the developmental, resilience, economic, and social progress elements of the just transition? Research and consultations are urgently needed to define and tailor strategies to each country’s circumstances and realities.

For global financiers, impact trumps pledges

Progress on loss and damage funding at COP28 is an important step forward. Yet it also reminds us that the wider scale of transitioning the entire global economy in line with climate goals will require massive capital investment — estimated at roughly $200 trillion to $275 trillion by 2050.

To hit that goal, the private sector must play a bigger role. And while green finance has already gained significant momentum, increasing 100-fold in the past decade, uncertainty still exists around the implementation of “transition finance” to decarbonize high-emitting and/or hard-to-abate sectors. Adapting today’s financial market practices to better accommodate the needs of transition finance can help unlock the flow of climate capital. RMI Managing Director Brian O’Hanlon sees these priorities:

Bridging the public-private financing gap. To deliver full-scale deployment of commercially proven clean energy technologies in Africa and throughout emerging markets, lenders and projects need to move beyond grant-funded demonstration projects, and de-risk portfolios of investments to better meet international financing requirements. These steps can help mobilize international private capital at scale, while ensuring that local project developers do the real work on the ground. With a project pipeline of $464 million in the Pacific, the Climate Finance Access Network (CFAN) offers a practical and actionable solution to developing countries facing capacity constraints in accessing climate finance.

Carbon on balance sheets may go up before they can go down. A key challenge of transition finance includes the risk of financial institutions divesting from high-emitting sectors on paper, but without delivering real reductions. This can happen when financial institutions sell their emitting assets, and can thus show decarbonization progress on their balance sheets. Yet the underlying assets and their related emissions haven’t changed however, only their owner has.

There are ways to overcome these barriers. At COP28, RMI created consensus on how to do so. For investors who have pledged to decarbonize their portfolios, more reliable ways to classify and track underlying emissions reductions is growing as initiatives such as the methane rules and agreements (see above) get traction. Investors need rules of engagement to clarify when financing methane abatement in fossil fuel progress results in overall emissions reductions or simply prolongs the life of emitting assets in ways that are incompatible with preventing disastrous temperature rise.

Climate impact from financial decisions. Shifting from past measures to future forecasts. Historically, investors and lenders have primarily looked at past emissions to assess progress toward climate goals — this method is essentially a look in the rear-view mirror. Now, regulators and climate experts are increasingly demanding forward-looking metrics that offer a more accurate assessment of future results by better modeling how financial decisions made today will affect the future trajectories of decarbonization and resilience of local economies. To support this shift, RMI leads the development of PACTA, a software application that predicts the climate impact of entire financial portfolios of investment and activities, often spanning multiple sectors and geographies.

Challenges ahead

As the world digests the implications of COP28’s agreements — and omissions — priorities for COP29, in Baku, Azerbaijan, are already becoming clear. Three are on our radar:

Renewables and the grid. The world has given itself just seven years to hit the ambitious goals of tripling renewable energy (3xRE) and doubling efficiency gains. This will require a steep ramp up in deployment in both developed and developing markets — including streamlined financing, quicker regulatory approvals, streamlining supply chains, and more rapid grid growth. Over the past decade, the average wait time to connect clean energy projects to the US grid has doubled to four years; in Europe and the United States delays to approve, build, and connect new clean energy projects can stack up to 10 years of more. Unlocking ways to upgrade and improve access to the grid are emerging as some of the toughest barriers to increasing renewables’ market share.

Carbon markets. In Dubai, negotiations around carbon markets (Article 6) collapsed and will need to be rebooted next year. Carbon markets remain a potentially powerful market solution to reduce emissions, yet voluntary markets faced multiple setbacks in 2023. RMI is working on multiple fronts to help mature these markets.

Finance. The New Collective Quantified Goal will take over from the rich world’s long-unfilled commitment to relay $100 billion per year to developing regions. This funding is growing in importance as renewables growth shifts into the Global South. Much of the world’s renewables growth (above) will be centered in the developing world, where most of the world’s economic growth, urbanization, and construction will unfold in coming decades. Many need help both building new clean energy systems, as well as aid in unwinding legacy fossil-fuel-based energy infrastructure. Projects in poorer countries remain more expensive and harder to finance and build, compared to richer regions, given higher risk premiums. Closing this gulf will help unleash faster renewables growth.

Hydrogen’s new moment | CPP Investments

A white paper on behalf of Thinking Ahead, a thought leadership platform at CPP Investments, a Canadian pension fund.

Challenge: Survey hydrogen’s enormous potential role in the energy transition across multiple sectors for an audience of non-energy experts.

Solution: A short white paper overviewing fast developing news in the hydrogen space, offset by classic data visualizations: call outs, tables and explainers for emphasis.

My roles: research, writing, data composition, chart design/recommendation, writing, copy editing, design/visual editing.

View the full report at CPP Investments or download here:

The Energy Transition: Risks and Opportunities | GARP

GARP-Energy-Risk-White-Paper-2021

  • This white paper surveys changes sweeping the global energy industry as net-zero carbon policy and alternative technologies begin to displace fossil fuels.
  • Researched and wrote 5,000-word report, drawing on primary research, press coverage and subject matter interviews; researched and designed data visualizations.
  • Target audience: Finance, traders and risk professionals in the finance, oil/gas, utility and renewables sectors.
  • On behalf of the Global Assn of Risk Professionals.  Published February 2021. 
  • Download the full report here or at garp.org.

Why wholesale POWER markets matter SO MUCH to big ENERGY buyers | GreenBiz

When a big brand such as Google, General Motors or Walmart unveils an eye-popping commitment to use more renewable energy, the news usually gets attention. And as these pledges have multiplied in number and scale, corporate energy buyers are having impacts beyond the headlines. They’re reshaping larger U.S. power trends by pulling investment into renewables.

Already, roughly half of the Fortune 500 have climate and clean energy goals; over 250 large companies have committed to using 100 percent renewable energy. Corporate buyers have collectively deployed over 23 gigawatts (GW) of new renewable energy over the past five years, according to the Renewable Energy Buyers Alliance (REBA). Over the next decade, renewable energy demand from Fortune 1000 companies could add 85 GW.

To speed progress, REBA and its membership of 200-plus energy buyers and sellers have launched a set of guiding principles to standardize wholesale electricity markets across the U.S. 

By making it easier for big power buyers to synchronize terms with utilities and project developers, the principles should stimulate investment, drive down renewable energy prices and, the alliance hopes, boost market competition while growing supply. REBA’s goal is to catalyze 60 GW of new renewable energy projects over the next five years.

Wholesale power markets already serve most U.S. consumers. The largest of these — such as the middle-Atlantic’s PJM or MISO, which spans Louisiana to Minnesota — straddle multiple states and coordinate the intricate flow of power from thousands of power plants, across millions of miles of wires, to tens of millions of customers. Today, roughly 80 percent of corporate power purchase agreements take place within existing wholesale energy markets, according to REBA. 

The principles are significant because American businesses are making wholesale market design a central priority not just to meet their own clean energy goals but also to shape the market structures …

Yet large swaths of the economy remain outside these regions. So standardizing rules for all the participants and extending wholesale markets across the entire country could enable even more deals. 

In a document released during a breakout session at last week’s VERGE 20 event, REBA laid out key principles to organize extant and new wholesale markets. According to this roadmap, well-functioning wholesale energy markets are defined by three core principles which should:

  • Unlock wholesale market competition to catalyze clean energy by ensuring a level playing field, large energy buyer participation, and services that provide actual value for energy customers.
  • Safeguard market integrity through independent and responsive governance structures, transparency and broad stakeholder engagement and representation.
  • Design to scale to the future by ensuring operational scale, customer-oriented options to meet decarbonization goals, alignment with federal and state public policy and predictable investment decisions.

Improving wholesale markets

“The principles are significant because American businesses are making wholesale market design a central priority not just to meet their own clean energy goals but also to shape the market structures that are critical to help decarbonize the entire power most affordably, for everyone,” said Bryn Baker, director of policy innovation at REBA.

Operators should ensure customers have pathways to engage in decision-making, which is not always the case today, Baker explained. “Energy buyers can and want to have a seat at the table. It’s going to be really important that a broad cross-section of customer voices are present in these markets.” 

From the perspective of a big buyer such as GM, an effective wholesale market can capture supply from a larger geographical area. This can help optimize for price, by buying wind one day in one region and switching to solar in another area on another day. 

Diversity of sources reinforces grid resiliency, said Rob Threlkeld, GM’s global manager of sustainable energy, supply and reliability. In one region, solar power may be surging, while in another wind output is waning.

“A wholesale market allows you to really match that generation with the load at the lowest cost possible,” Threlkeld said.A wholesale market allows you to really match that generation with the load at the lowest cost possible.

“As we think about the wholesale markets, we want to drive toward a clean and lean grid,” Threlkeld added. “We’re moving from big, centralized plants to more decentralized operations … It allows us to optimize the grid itself, matching generation with load.”

GM has accelerated its commitment to renewable energy, aiming to power 100 percent of U.S. facilities by 2030 and global operations by 2040. Wholesale markets can help, Threlkeld said, by hastening the deployment and procurement of cost-effective clean energy. 

Energy consumers take the lead

REBA’s efforts reflect wider trends in the energy industry, where households and big businesses alike are pushing energy companies to respond to their needs. “The conversation is shifting from a production focus to one where consumers are driving the next wave. It’s about what customers want and how they’re consuming power,” said Miranda Ballantine, REBA’s chief executive. 

Localization of renewable energy is also guiding REBA’s agenda. In the past, companies had little choice but to contract renewable capacity from far-off markets. Today, more are seeking to procure renewable energy near their facilities on the same grid they operate. “More companies are saying that they want to time match those renewable electrons with their consumption,” Ballantine said. 

Google recently unveiled plans that highlight the challenges corporate energy buyers face in upgrading their renewables sourcing from such a first-generation approach, where they may still use local fossil-generated energy but net that out against purchases elsewhere. In April, the internet goliath unveiled complex software-based plans to dynamically match its actual minute-by-minute consumption with low-carbon electricity supplies by region, a technical challenge no other large company has yet solved.

For other companies, simply accessing regional grids with sufficient low-carbon energy remains a challenge. Somewhere between 30 and 40 percent of corporate assets are not in the kinds of regional transmission organizations (RTOs) that can draw and balance power from a wider region, Ballentine said. 

“Those customers have very little opportunity in those markets to actually make choices to drive zero-carbon electrons to power their facilities,” Ballantine added. Absent organized wholesale markets, companies can’t really use their demand signals to drive change in the type of electricity they’re consuming. 

Originally published at Greenbiz.com.

Despite naysayers, green energy keeps growing | GreenBiz

Despite naysayers, green energy keeps growing Clean-energy programs find themselves squarely in the cross hairs of the GOP this election season. After pillorying the White House over Solyndra’s collapse, the House has been griping about everything from military spending on renewables to Obama’s failure to lower gasoline prices. So it may not be the best of times to crow about green energy success.

Or maybe it is. After all, while the past year may be remembered for cleantech’s struggles, green-energy companies turned in another banner year in the humdrum businesses of generating renewable electric power and biofuels.

All together, solar PV, wind and biofuel markets expanded by 31 percent last year to $246 billion globally, according to Clean Edge’s 11th annual edition of Clean Energy Trends 2011, a wrapup of key green-energy indicators. The expansion caps a five-year run during which these markets have grown by roughly a third each year.

To be sure, the market issues facing solar PV manufacturers, wind turbine makers and biofuel producers are very different, so I want to be cautious about generalizing. But the three share similarities. All are gaining sales in established markets dominated by fossil fuels. All have matured beyond startup stages and are, accordingly, seeing the emergence of sophisticated, large-scale players.

And, of course, all three have faced souring public support in the past year. Solar subsidies retreated in Europe. And in the U.S., tax benefits were eliminated for corn ethanol, while the wind industry is once again fighting for the renewal of its production tax credits.

Last year, “the industry became a modern-day whipping boy,” Ron Pernick, Clean Edge co-founder and managing director, said in a press statement. “The attacks… overlooked the fact that many clean-energy technologies are becoming increasingly cost-competitive, central to the expansion of energy markets in places like China, Japan and Germany, and a critical hedge against more volatile forms of traditional energy.”

Despite these headwinds, Clean Edge expects the markets to grow steadily — albeit more slowly — in the decade to come. It projects the clean-energy market will expand by 4.6% per year (compounded) to $385 billion by 2021. In all three technologies, falling prices will spur further growth.

Solar photovoltaic: Sales of PV panels globally surged to $91.6 billion in 2011 from $71.2 billion in 2010. The surge is all the more remarkable because it comes amid fast falling unit prices for solar panels. Put another way, dollar sales rose by 29 percent, while the volume of watts installed soared by 69 percent to more than 26 gigawatts worldwide last year from 15.6 gigawatts in 2010. Clean Edge projects that the cost to install solar PV systems will fall from an average of $3.47 per watt globally last year to $1.28 per watt in the next decade. The falling price will make solar PV cheaper than the grid average price in about a dozen U.S. states in that period.

Wind power: The volume of new turbines coming on line also hit a record last year, with 41.6 GW of wind capacity installed. Assuming, as a rule of thumb, that windmills produce about a third of their rated capacity, that’s the equivalent of more than a dozen nuclear reactors. The total spent to build that new capacity hit a record: $71.5 billion, up 18 percent from $60.5 billion in 2010.

Biofuels markets also established a new high in 2011, with $83 billion in global sales, up from $56.4 billion the prior year. Unlike the markets for solar and wind technology — where falling prices were the rule – per-gallon prices for ethanol and biodiesel rose through the year, reflecting the higher costs of feedstocks such as corn and plant oils, as well as higher fossil-fuel prices.

Venture capital. U.S.-based venture-capital investments in cleantech grew by 30 percent to $6.6 billion in 2011, from $5.1 billion in 2010, according to data provided by Cleantech Group. Clean Edge analysis found that cleantech deals accounted for a record 23 percent of the total U.S. venture-capital investments last year.

Just in time for GreenBiz’s VERGE meeting in Washington, Clean Edge’s report also focuses on several key trends highlighting the way that energy technologies, efficiency and infotech are converging to transform business and government practices. These include the potential for “deep” retrofits in commercial buildings; the growth of waste-to-resource business plays; the promise of energy storage on the grid; the U.S. military’s growing emphasis on clean technology and efficiency; and Japan moving into its post-nuclear future.

Check out the Clean Edge’s full report at http://cleanedge.com/reports/charts-and-tables-from-clean-energy-trends-2012 (click on “Download full report” on the left).

Photo courtesy of Vaclav Volrab  via Shutterstock.

~

View the original article here: http://www.greenbiz.com/blog/2012/03/14/despite-naysayers-green-energy-keeps-growing

Lessons form California’s daunting carbon challenge | Global CCS Institute

Among US states, California is leading the race to explore and implement ways to lower its greenhouse gas output. Its goal: to cut emissions to one-fifth of 1990 levels by mid century. As such, other states and nations are closely watching the Golden State’s practices for inspiration and technical guidance.

What then, if a deep, hard look at California’s ambitious plans to lower its greenhouse gas emissions revealed that – even by pursuing an all-out, no-holds-barred mix of today’s technologies and aggressive efficiency measures – the state was only likely to get about halfway towards its goal?

That, roughly, is the conclusion that Jane C. S. Long comes to in a commentary published in the journal Nature last October. Titled Piecemeal cuts won’t add up to radical reductions, her note maps out, with remarkable clarity, the mountainous challenge ahead for California to achieve its climate goal. The bracing conclusion: California can’t just spend or deploy its way to an 80 per cent reduction or beyond – and neither can anywhere else.

Jane’s expertise stems from her role as co-leader of a team of energy analysts who wrote California’s Energy Future: The View to 2050 published in May 2011. By day, she’s principal associate director at Lawrence Livermore National Laboratory, a global leader in research on energy technologies and policy.

One of the important implications that surfaces in Jane’s broader analysis is the central role of carbon capture and sequestration (CCS). This is somewhat surprising given that California’s grid is all but coal-free.

California is different from most states, she observes, with 40 per cent of total energy used for transportation, versus 25 per cent nationally. Thus CCS must come into play less so for grid power than to help generate low-carbon vehicle fuels and other applications where neither electricity nor biofuels can substitute for existing fossil fuels.

The model Jane and her team developed strives to avoid what she calls ‘sleights of hand’ where it can be difficult to fully account for the secondary or tertiary impacts induced by switching to new energy forms. For example, rather than simply count solar panels as clean generation, Jane’s model more fully enumerates the impact of electric power generation at night and other times when solar panels are off line.

The analysis reveals that to achieve a 60 per cent reduction – well short of the 80 per cent goal California and many nations are looking to – would require all manner of tough-to-imagine steps:

[The state would have to] replace or retrofit every building to very high efficiency standards. Electricity would have to replace natural gas for home and commercial heating. All buses and trains, virtually all cars, and some trucks would be electric or hybrid. And the state’s entire electricity-generation capacity would have to be doubled, while simultaneously being replaced with emissions-free generation. Low-emissions fuels would have to be made from California’s waste biomass plus some fuel crops grown on marginal lands without irrigation or fertilizer.

Given that California represents a best-case scenario for the rest of the US, Long’s assessment is a compelling case to accelerate the speed and scope of carbon-reduction efforts.

I’ll refrain from diving into the broader implications of her report here – better to check it out in whole. Instead, for the Global CCS Institute’s community, I wrote to Jane to tease out a bit more of her vision of CCS in California’s future. An edited version of our exchange follows.

Adam: You’ve said that CCS has a critical role in helping California achieve its goal of cutting emissions to 20 per cent of their 1990 levels by mid century. How so?

Jane: I would guess that CCS will not play much of a role in meeting the AB32 goals of 20 per cent reductions, but it may play an important role in meeting the longer-term goal of 80 per cent reductions by 2050. Natural gas generation is a large part of California’s electricity portfolio. If this is to continue and meet the emission reductions, CCS would have to be used whether or not that generation was within state or say, by wire from Wyoming.

In the long term, CCS may play a critical role in solving the fuel problem. We are unlikely to have enough biofuel to meet all of our demands for fuel even if we are successful in cutting demand in half through efficiency measures and electrifying everything we can. CCS could be part of a hydrogen scenario where we get hydrogen from methane and sequester the CO2 generated in this process. Or we might use biomass to make electricity and sequester the emissions to create a negative emission credit to counter the continued use of fossil fuels.

Adam: Yet CCS technologies remain immature and under-commercialized. Starting in what years would CCS need to begin entering into California’s energy mix to play this kind of role? And are we already behind that pace?

Jane: If we start now with demonstration projects, it could be possible to have all new fossil generation be using CCS within a few decades. We need that amount of time to be sure the demonstrations are working.

Adam: What lessons does California’s CCS case have for the transportation challenge in other countries?

Jane: The transportation problem in the developing world is really interesting because it’s not clear that countries like India, for example, should electrify automobiles as a first strategy. If their electricity is made with coal without CCS, electrification is not a clear benefit. If they move to de-carbonize electricity, then electrification of transportation and heat makes much more sense.

Adam: I’ve assumed that developing countries such as China and India ought to leapfrog to electric fleets ahead, and skip the oil-burning stage, to whatever degree possible. You’re suggesting that might not be the best bet for the climate?

Jane: The distance countries like China and India have to go to provide enough electricity at low emissions is huge. If having to run cars on electricity means they add twice as much coal-fired electricity without CCS it would be a disaster. As well, the biomass for biofuel problem is likely to be more acute in these countries as they face serious challenges with food supplies. In the same 2050 period that we are looking to more than double energy supply, we are looking to double food supply. As it takes some time to roll over the fleet of automobiles to electric vehicles, it probably makes sense to move forward with electric transportation at some level as this is what we need in the long term, recognizing it will make the need to decarbonize electricity even more acute.

Adam: Writing for the Institute, the Natural Resource Defense Council’s CCS expert, George Peridas, recently summarized California’s progress as “not a whole lot of progress on the CCS front to showcase since last year, but developments are expected soon”. How could the state reorder its CCS priorities to pick up the pace of technology development?

Jane: The state could get behind a demonstration project for a combined cycle gas plant. There are a lot of people skeptical about CCS. We need to have a concrete example that it works. A big issue in CCS is integrating all the complex industrial processes: electricity generation, capture, and storage. We need experience in actually doing what we theoretically ‘know’ how to do.

For an exploration of the broader report, along with further details on the technicalities of the model used in Jane’s analysis, check out Andy Revkin’s interview with Jane at his Dot Earth blog at the New York Times.

Venture capital investment in cleantech shrank by 4.5% in 2011 | GreenBiz

Why Sinking Cleantech Investment Data Aren't the End of the World

In cleantech, as in most realms of emerging technology, venture capital acts as a sort of incubator for the youngest, most promising technologies. That’s why it’s a cause for concern when venture capital investment slows or shrinks.That’s just what happened last year. In 2011, venture capital investment in early-stage cleantech companies fell by 4.5 percent, to $4.9 billion, compared with the 2010 tally, according to a round-up of full-year data by Ernst & Young published Feb. 1, based on data from Dow Jones VentureSource.Whether this downtick is cause for concern is open to argument. The question links to hot-button issues being debated in Congress, on the campaign trail, and in the media. I, for one, believe that given the headwinds facing cleantech, the numbers are cause for optimism. They’re good news, but I wish they were better.figure 1To make my half-full case, note that cleantech venture capital investment has been resilient despite both economic and political headwinds. Last year’s funding remains 29 percent higher than its 2009 total, when overall venture flows crashed in the wake of the global financial crisis.

What’s more, cleantech is nurtured by other streams of capital. As I reported last month, global investment in mature renewable energy technologies — new wind farms, solar panels, and the like — expanded by 5 percent, to $260 billion last year. That rise helped put total investment in renewable energy, efficiency, smart grid and related technologies over the trillion dollar mark last year.

Still, I’m a worrier. And there are reasons to furrow my brow at these numbers.

However promising cleantech may be, venture capitalists are finding more alluring options in other sectors. Cleantech’s decline comes despite a 10 percent rise of overall venture capital investment. Globally, for the year, investors placed $32.6 billion into 3,209 venture deals, according to Dow Jones Venture Source.

So while cleantech retreated, investment in healthcare and IT startups remained roughly steady. The big winner? Consumer information services — think Twitter, LivingSocial and Zynga — pulled in $5.2 billion, up 23 percent from the prior year.

But before I complain any further that clean technology shouldn’t be losing out to Twitter, let alone Facebook, here’s a bit more on what went down in cleantech over the past year.

• Battery technology is hot. Energy storage continues to attract interest, and growing flows of money. Venture investment in batteries rocketed up by 253 percent. And this is bound to accelerate. Growing volumes of electric vehicles, plus the graduation of wind and solar from emerging-tech status to mature technology, are all driving demand for energy storage, in a dizzying array of niches.

And while some segments of battery manufacturing are mature — increasingly subject to the sorts of commodity price dynamics driving down prices of solar PV — there is arguably bigger potential for scientific discovery to upend today’s batteries.

• Investment is tilting towards more mature plays. Cleantech companies already generating revenue garnered 69 percent of the funding, up from 50 percent in 2010.

• M&A exits dominate. Given the parlous state of IPO offerings, mergers & acquisitions continue to be the main path to maturity for cleantech players. In 2011, a total of $2.9 billion in M&A deals involved cleantech startups, some 79 deals, according to Ernst & Young’s analysis.

• IPO drought lingers. Just five companies IPO’d in 2011, not many more than the three that listed a year prior. Biofuels dominated last year’s public debuts, with Solazyme, Gevo, and KiOR. Intermolecular, a semiconductor R&D company focused on cleantech listed in the final quarter, as did Rentech, a clean energy solutions provider. The five raised a total of $688 million.

The low count of IPOs for cleantech is an indicator of a growing backlog and is one reason why new cleantech investment may be slowing. Without a clear line to exit, venture funders will steer their money to sectors where it’s easier to cash out.

Thus, Facebook. Good things may yet come of Facebook’s super-hyped IPO. Perhaps it will improve the atmospherics around cleantech IPOs?

But on balance I find the din disheartening. The very big IPOs by Twitter et al. smack of hype. To emphasize my point: Facebook’s pending IPO is likely to raise around $5 billion, more than was invested by VCs in the entire cleantech sector last year. Indeed, Facebook’s valuation is verging on speculation, maybe even magical thinking. The offering is slated to value the total company at $100 billion.

Compared with the foaming enthusiasm for all-things-Facebook, it can feel like cleantech has drifted into a period of backlash, however undeserved. Investment continues apace to be sure, but the narrative around cleantech is growing more polarized.

Long-time cleantech investor Ira Ehrenpreis put it this way, as quoted in GreentechMedia.com: “While I’ve never been more bearish on U.S. cleantech, I’ve never been more bullish about global cleantech.”

Blame domestic politics for the widening gap in cleantech prospects here compared with global markets. Leading the negative push—recklessly so—are House Republicans, who seem intent on vilifying federal support of renewable energy, using Solyndra’s failure as a political bludgeon against President Obama. Likewise, the GOP presidential aspirants have retreated on cleantech: far-right opposition of climate change is so dogmatic, even discussions of cleantech have become off limits despite the fact that practically all the Republican candidates have championed renewable investment in the past.

Meanwhile, media find it hard to resist the counter-intuitive appeal of the “cleantech is failing” tale, and are amplifying the meme. Picking up on the GOP’s talking points, the tally of stories of Solyndra’s failure far outpaces coverage of the fact that it’s been a record year for solar capacity growth in the U.S. Or that plummeting solar prices are a windfall for buyers of the technology, enabling even energy-poor regions such as India to light up.

Witness Wired magazine’s February story “Why the Clean Tech Boom Went Bust.” While its author, Washington Post’s Juliet Eilperin, actually offers a reasonably measured take on the impact of cheap natural gas and the Solyndra scandal, you’d have a hard time figuring that out from the headline or the explosive artwork illustrating the story (at right, by Dan Forbes).

Lurid pictures of exploding wind mills, fiery biodiesel canisters, and a shattering PV panel left me thinking that John Doerr must be on the verge of switching back coal heat for his mansion. Meanwhile, elsewhere on Wired.com, the breathless all-technology-is-pretty-much-cool coverage of green developments continues apace.

Wired’s schizophrenic take on cleantech is not unique, but it deserves special attention because the magazine has been such a vocal, effective champion for innovation as a driver of economic growth. The editors’ tabloid take on cleantech is sure to gather clicks: scores of contrary comments and irate tweets suggest the story has generated a lot of attention.

But in gunning for controversy, Wired goes off target, loosing sight of the bigger, better idea that cleantech is a near-ideal innovation catalyst for U.S. economic growth. That’s why we should keep our fingers crossed that venture capitalists will keep steering more money into the sector too.

See the original story here: http://www.greenbiz.com/blog/2012/02/06/why-sinking-cleantech-investment-data-arent-end-world

Clean Energy Makes Big Strides, but Just How Sustainable is the Growth? | GreenBiz

Clean Energy Makes Big Strides, but Just How Sustainable is the Growth?

Global investment in clean energy capacity expanded by 5 percent in 2011 to $260 billion. The growth comes despite the considerable drag from economic crisis in Europe and weak growth in the U.S.

The new research, compiled by Bloomberg New Energy Finance, was announced yesterday in New York at United Nations headquarters building, site of the Investor Summit on Climate Risk & Energy Solutions.

Up from $247 billion in 2010, last year’s rise in spending on clean energy capacity offered reasons for optimism along with rising cause for concern. Note that this data includes spending on renewable energy technologies, but not advanced coal, nuclear or conventional big hydro.

The good news: Spending has quintupled in the past seven years, with outlays for solar power leading the expansion — soaring by 36 percent to $137.5 billion during 2011.

And in the global horse race for green energy leadership, the U.S. regained its lead over China for the first time since 2008. U.S. spending hit a record, at $55.4 billion, up 35 percent, as investment in China rose by just one percent to $48.9 billion.

“The performance of solar is even more remarkable when you consider that the price of photovoltaic modules fell by close to 50 percent during 2011, and now stands 75 percent lower than three years ago, in mid-2008,” Michael Liebreich, chief executive of Bloomberg New Energy Finance, said in a statement.

But lurking behind those big numbers are worries that U.S.’ resurgence in 2011 may turn out to be the lunge that precedes a stumble. Spending in the U.S. was buoyed by a big surge of stimulus funds, originally set aside in the 2008 stimulus bill, that will taper off sharply in the year ahead.

“The U.S. jumped back into the lead in clean energy investment last year,” Liebreich added. “However before anyone in Washington celebrates too much, the U.S. figure was achieved thanks in large part to support initiatives which have now expired.”

As those incentives shrink, the global wind and solar industries are set to consolidate. Supply in both the wind and solar markets exceeds demand significantly, leading to bankruptcies and pullbacks. In the solar space, Solyndra is the most visible, but one of a growing number of startups that crashed under pressure from falling solar cell prices.

Dominated by mature conglomerates such as GE and Siemens, the outlook for wind is dimmer than for solar: Global investment fell by 17 percent to $74.9 billion. To try to compete with lower-cost Chinese manufacturers Vestas, the world’s largest producer of turbines, yesterday announced it was shuttering a factory, and cutting 2,335 jobs, or about 10 percent of its staff.

Of course, oversupply means lower-cost energy systems for buyers. And even as subsidies are declining in the wealthy West, non-financial policy support remains resilient. In the U.S., renewable portfolio standards in 29 U.S. states represent a $400 billion investment opportunity, as other states finalize similar commitments.

Meanwhile, stepped up subsidies in emerging markets — especially Brazil and India — are upgrading energy services to virgin markets. Spending in these areas will replace some of the investment that is retreating in North America and Europe, said Ethan Zindler, Head of Policy Analysis at Bloomberg New Energy Finance.

Financial innovation remains a weak spot, however, especially in the U.S., where clever capital solutions could help fill the gap left by shrinking federal subsidies. Given the multi-billion dollar scale of many clean-energy investment projects, there’s been a dearth of the sorts of high-efficiency financial instruments that can bundle up batches of projects, and finance them at low cost in public markets, Zindler added.

There have been some promising precedents — such as PACE loans and solar lease-to-own programs. But nothing has yet emerged to substitute for large-scale, multi-billion federal subsidy programs. Proposals such as green bonds or a national infrastructure bank are stuck in the starting gate, said Zindler.

Institutional investors, meanwhile, are hungry for more diversified ways to put money into greener projects. “Investors need diversified, sustainable strategies that maximize risk-adjusted returns in a volatile investment environment,” said Ceres head Mindy Lubber, which directs the Investor Network on Climate Risk, a network of 100 institutional investors with collective assets totaling about $10 trillion.

The retreat of subsidies may enhance the competitiveness of products and strategies already honed to deliver higher efficiency and energy savings, said Marc Vachon, vice president of ecomagination at GE. He added that GE’s ecomagination product line is growing at twice the rate of the rest of the company, having already generated $85 billion in revenues to date.

The event saw the release of two other reports of note for folks following investment trends in green business and clean tech:

• Global investment consultant Mercer issued a new report showing how leading global investors, including the nation’s largest public pension fund, CalPERS, are integrating climate change considerations into investment risk management and asset allocations. The report, “Through the Looking Glass: How Investors are Applying Results of the Climate Change Scenarios Study” comes on the heels of a Mercer report last year showing that climate change could contribute as much as 10 percent to portfolio risk over the next 20 years.

• Deutsche Asset Management also released a new report, “2011: The Good, The Bad, and the Ugly,” describing generally mixed results on climate investments and policy in 2011 but projecting long-term growth in cleaner energy markets to continue. Positive trends included China and Germany’s continued low-carbon leadership, the U.S. Environmental Protection Agency’s issuance of new rules on hazardous air pollutants, Australia’s new carbon legislation, and Japan’s commitment to supporting the deployment of more renewable energy.

The report also highlights negative trends such as the weak performance of cleantech public equity stocks in 2011 and the expiration of several U.S. federal renewable energy incentive programs, including the “highly successful” Treasury Grant Program that expired Dec. 31, 2011. The report noted that the TGP program, in 2 1/2 years, leveraged nearly $23 billion in private sector investment for 22,000 projects in every state across a dozen clean energy industries.

Last but not least, a plug. If you, like me, have concluded that the “end of coal” is all but inevitable to prevent catastrophic climate change, check out this remarkable presentation — which ended with a standing ovation — by Richard Trumka, President of the AFL-CIO at yesterday’s summit.

Trumka, a former miner, spoke with passion about how the “end of coal” message is landing on the ground in blue-collar coal country, even as he acknowledged the dire need to address climate risks and build a low-carbon economy.

His message is cause to reflect on how labor’s interests are often misunderstood and under-represented in climate policy discussions. Where coal miners see their jobs, housing values, and culture imperiled, it’s no surprise that the politics of climate change become hard to swallow — no matter how chaotic the climate change signals may be. The same labor issues vex the proposed XL Pipeline, about which Trumka says labor remains divided, and natural gas fracking as well.

Read the transcript here or watch his talk below, starting just before the 14-minute mark. It’s well worth the 15-minute running time. If the embedded player isn’t working, point your browser here: http://www.unmultimedia.org/tv/webcast/2012/01/2012-investor-summit-on-climate-risk-and-energy-solutions-2.html:

Wind turbine photo CC-licensed by Samuel Stocker.

How SolarReserve Navigates Darkening Prospects for Big Solar in the US | GreenBiz

How SolarReserve Navigates Bleak Predictions for Solar in the US

On the sun-baked plains outside Tonopah, Nevada, a huge white pillar is inching upwards, as concrete piles up towards an ultimate height of some 60 stories. The slender structure is evidence of the tangible progress — and rising risks — facing a dwindling number of developers of large-scale power plants in the deserts of the western U.S. slated to make electricity by converting the sun’s heat into power.

I recently caught up with Kevin Smith, the Chief Executive Officer of SolarReserve. The Santa Monica, Calif. company is building the tower that will sit at the heart of its $900 million Crescent Dunes Solar Energy Project. Smith emphasized that while the tower attracts a lot of attention, it may be that the project’s ability to store the sun’s energy will become its most competitive virtue, particularly at a time when as the solar market is being rocked by plummeting prices for photovoltaic panels, a competing technology.

Topping out at over 600 feet, the Crescent Dunes solar tower will rank among the tallest structures in Nevada. It has to be that tall to absorb the reflected light from some 10,000 billboard-sized mirrors that will be installed in concentric half circles around its base. Once complete, the pillar will be capped with a collector, at which all those mirrors will point, focusing the sun’s rays. Where the reflected rays converge, temperatures will hit over 1,000 degrees Fahrenheit.

To make electric power, this thermal energy can be used immediately to generate steam in a turbine. Or the heat can be stored, absorbed in molten salts kept in insulated containers. This trick solves the intermittency problem that bedevils most renewables. Drawing on this stored heat, the facility can control when and how much electricity to make, and command a higher price from utilities by supplying power when demand is highest.

This ability to deliver power on demand makes the Tonopah project different from all but a very few large-scale renewable energy installation in the U.S. Windmills and other kinds of solar farms can store energy only by using costly battery banks, or pumped air storage or pumped hydro, both of which require relatively rare sighting conditions. Tonopah’s design is the largest of its kind, building on precedents set by a pair of smaller solar towers that have been operating in Spain and Arizona.

Since construction started in Tonopah last August, Smith would seem to have plenty to celebrate. Once the tower is complete, laying out the field of reflecting mirrors will follow. Come December 2013, the project is slated to begin feeding up to 110 megawatts of power into the western grid. What’s more, Tonopah is just one of a backlog of some 3,000 megawatts of energy projects SolarReserve has in its pipeline, including contracts to build two other solar towers in Spain and California.

But, when asked there would expect to see more projects in the U.S. further out, Smith was pessimistic. While financing for current projects is locked in, the Dec. 31 expiry of the so-called 1603 Treasury grant program — which offers a 30 percent federal cash grant to qualified renewable energy projects — threatens to stall the development of future large-scale solar plants.

The grant, along with many other renewable energy subsidies has been drawn into the toxic politics stemming from the failure of Solyndra, which was granted $535 million federal loan guarantee to commercialize a novel design for tube-based solar panels. Critics have gone on the warpath, questioning practically all renewable-energy projects that have received federal funds. SolarReserve was offered a $737 million loan guarantee by the DOE last May to help build the Tonopah project.

The hostile partisanship, together with shrinking federal funding, is souring a hot market here. “Unfortunately, U.S. policy is going in the opposite direction of much of the world,” Smith told me. “We’d love to have our home market continue to develop, but it looks like the next 12 months will be pretty flat.” In response to this uncertainty, SolarReserve has been expanding its development efforts overseas.

Were SolarReserve to de-emphasize U.S. projects, it would be another in a series of setbacks for U.S. solar technology and developers. Beyond the partisan backlash and broader economic recession, a key cause for these woes has been the plummeting cost of conventional photovoltaic panels, which have collapsed by roughly half over past two years.

The downward price spiral was the key culprit and Solyndra’s crash, and others have followed suit. U.S. players Evergreen Solar and SpectraWatt have likewise gone under. Just before Christmas, energy giant BP, once famous for a commitment “Beyond Petroleum”, fully exited the solar business, saying it “can’t make money” selling panels. Analysts agree that this brutal shakeout will continue, jeopardizing mature and startup solar players alike.

Plummeting PV prices are affecting SolarReserve’s competitors too. Indeed, its progress in Tonapah is all the more notable given the attrition rate of other efforts to build very large concentrated solar thermal (CST) projects. Once regarded as a low-cost way to capture the sun’s energy, many CST facilities have been done in by the tumbling price of conventional solar panels. To date, solar farms totaling 3,000 megawatts of capacity have switched from CST to conventional panels. That SolarReserve has avoided having to make such a switch is partly due to the edge offered by its ability to store energy.

Complicating any discussion on the future of solar is that, for all the harm ultra-cheap PV panels have done to some U.S. manufacturers, they have provided windfall savings for many panel buyers and many project developers. In the U.S., the industry is closing out its biggest ever year, with upwards of 1,700 megawatts worth of solar brought on-line, nearly double the 887 megawatts installed in 2010. Blue-chip investors continue to pile into new projects, too. Last week, Google laid out $94 million to fund four new solar power farms near Sacramento, Calif.

Come 2013, when SolarReserve’s solar tower starts to glow, the sight will surely attract tourists, press and industry attention. Here’s hoping the tall tower won’t mark the nadir of home-grown U.S. solar technology, as well.

Despite Boom in Renewables, Risks Could Hurt Further Growth | GreenBiz

“Alternative” energy is officially not so alternative anymore. Last year, for the first time ever, spending on projects to generate electricity from renewable sources eclipsed the amount spent to build conventional fossil fuel plants.

In 2010, renewable projects drew $187 billion in investment, 19 percent more than the $157 billion spent to build or augment conventional generating plants, fuelled by natural gas, oil and coal, according to analysis released by Bloomberg New Energy Finance for the Durban climate talks.

As the clean energy sector comes of age it must now reckon with the challenges of more mature industries. Namely, managing the risk posed by larger, more complex projects. According to “Managing the Risk in Renewable Energy,” a report released this week by the Economist Intelligence Unit and Swiss Re, minimizing financial risk is one of the most “acute” challenges facing the sector in the near term.

The renewable energy sector will face an even more uncertain future if it fails to manage the growing risks associated with larger, more complex projects, EIU found. The study was based on survey of 284 senior-level renewable energy executives.

The survey found that renewables have moved to center stage. Power companies increasingly view renewable energy as central to their business strategies, and are developing larger and more complex renewable energy projects. Billion dollar projects, once rare, have become regular.

Worry is rising among renewable energy investors that some of the other 100 or so governments supporting clean energy will cut public subsidies as part of austerity measures, the report found. Fiscal crisis in Europe and economic malaise in the U.S. suggest public support for renewable energy is more likely to shrink than grow in the near term. For example, solar feed-in tariffs are being slashed across Europe: lowered by 15 percent in Germany and up to 70 percent in the U.K.

As public funds dry up, the appetite for renewables remains strong, siginaling a shift to more private funding. “Risk management measures such as insurance will be key to encourage further private sector investment,” said Agostino Galvagni, Chief Executive Officer Swiss Re Corporate Solutions in a statement. “Additional investments into renewable energy are needed to achieve the transition to a low-carbon economy,” he added.

A major issue in renewable energy projects is their high up front costs. Projects are typically capital-intensive and highly leveraged, with up to up to three quarters financed through debt. As companies seek to scale up investments, overcoming financial risks is one of the biggest challenges, according to 76 percent of the survey respondents.

Among plant investors, owners and operators surveyed, other significant concerns included political and regulatory risk (62 percent) while weather-related volume risk comes in third for wind power producers (66 percent). These risks increase further as projects grow in scale and complexity.

The report revealed that while companies are sophisticated in using insurance elsewhere in their businesses, the dearth of risk-management tools in the renewables space has limited their use. About two-thirds of respondents already use insurance to transfer risks. But only half of respondents said they are currently transferring risk successfully, for example through insurance to hedge against the risk of weather-related reductions in output of a solar park or wind farm. Instead, because of the limited availability of suitable risk-transfer mechanism, many retain the risks related to renewable energy assets on their balance sheets due to.

The use of solutions such as weather-based financial derivatives is slowly picking up, even though only 4 percent of wind power producers apply them to their projects. Many solutions on the market today are unsuitable for small-scale projects. In the survey, executives say they would transfer more risk if suitable risk-transfer products become more widely available in the future, particularly more standardized and cost-effective products.

With the next round of global climate talks expected to founder in Durban, the need to develop more efficient private sector investment tools for technologies that mitigate climate change, such as renewables, is only growing. The toll for climate related damage is expected to continue to rise in coming years. In 2011, the U.S. eclipsed the prior worst-year record for extreme weather events, with 14 such events doing more than $1 billion in damage. In 2008, the prior record year, the tally was nine such events.

“New technologies and innovation in renewable energy will be the only possibilities left should a global policy regime to reduce carbon emission not materialize,” says Andreas Spiegel, Swiss Re’s Senior Climate Change Adviser in a statement.

As the reports sponsor, Swiss Re is eager to “better understand how insurance can mobilize financing for renewable energy projects and identify the most cost-effective ways to reduce risks,” Spiegel added. Insurance can help lower construction and operational risks, by covering losses in the case of accident or delay.

For deeper dive into the survey’s findings, check out the EIU’s summary analysis here [PDF]. Cribbed from that analysis, here are the reports key findings, as well, according to Aviva Freudmann, Research Director at EIU.

1. Renewable energy is growing in strategic significance in the power industry, and is the focus of ever-larger investments.2. As renewable energy projects grow in number, scale and complexity, the industry faces a growing range of risks — as well as significant challenges in managing them.

3. Plant financiers and operators consider financial risks the most significant, particularly in early project stages.

4. Industry players are becoming more cautious, taking a variety of measures to reduce their exposures and transfer the remaining ones. One emerging way to manage certain risks is to diversify by geography and by technology.

5. By a wide margin, the industry chooses insurance to transfer financial risks to third parties, followed by capital-market instruments such as catastrophe bonds.

6. For operational risks, industry players seem unsure whether to continue using current risk transfer mechanisms, which focus on insurance and capital-market instruments. Many transfer operational risks to hardware suppliers.

7. Confusion abounds on how best to manage weather-related volume risks. The industry calls for a broader range of risk transfer products to cover such risks.

Solar farm photo via Shutterstock.