Tag Archives: emissions

Lessons form California’s daunting carbon challenge | Global CCS Institute

Among US states, California is leading the race to explore and implement ways to lower its greenhouse gas output. Its goal: to cut emissions to one-fifth of 1990 levels by mid century. As such, other states and nations are closely watching the Golden State’s practices for inspiration and technical guidance.

What then, if a deep, hard look at California’s ambitious plans to lower its greenhouse gas emissions revealed that – even by pursuing an all-out, no-holds-barred mix of today’s technologies and aggressive efficiency measures – the state was only likely to get about halfway towards its goal?

That, roughly, is the conclusion that Jane C. S. Long comes to in a commentary published in the journal Nature last October. Titled Piecemeal cuts won’t add up to radical reductions, her note maps out, with remarkable clarity, the mountainous challenge ahead for California to achieve its climate goal. The bracing conclusion: California can’t just spend or deploy its way to an 80 per cent reduction or beyond – and neither can anywhere else.

Jane’s expertise stems from her role as co-leader of a team of energy analysts who wrote California’s Energy Future: The View to 2050 published in May 2011. By day, she’s principal associate director at Lawrence Livermore National Laboratory, a global leader in research on energy technologies and policy.

One of the important implications that surfaces in Jane’s broader analysis is the central role of carbon capture and sequestration (CCS). This is somewhat surprising given that California’s grid is all but coal-free.

California is different from most states, she observes, with 40 per cent of total energy used for transportation, versus 25 per cent nationally. Thus CCS must come into play less so for grid power than to help generate low-carbon vehicle fuels and other applications where neither electricity nor biofuels can substitute for existing fossil fuels.

The model Jane and her team developed strives to avoid what she calls ‘sleights of hand’ where it can be difficult to fully account for the secondary or tertiary impacts induced by switching to new energy forms. For example, rather than simply count solar panels as clean generation, Jane’s model more fully enumerates the impact of electric power generation at night and other times when solar panels are off line.

The analysis reveals that to achieve a 60 per cent reduction – well short of the 80 per cent goal California and many nations are looking to – would require all manner of tough-to-imagine steps:

[The state would have to] replace or retrofit every building to very high efficiency standards. Electricity would have to replace natural gas for home and commercial heating. All buses and trains, virtually all cars, and some trucks would be electric or hybrid. And the state’s entire electricity-generation capacity would have to be doubled, while simultaneously being replaced with emissions-free generation. Low-emissions fuels would have to be made from California’s waste biomass plus some fuel crops grown on marginal lands without irrigation or fertilizer.

Given that California represents a best-case scenario for the rest of the US, Long’s assessment is a compelling case to accelerate the speed and scope of carbon-reduction efforts.

I’ll refrain from diving into the broader implications of her report here – better to check it out in whole. Instead, for the Global CCS Institute’s community, I wrote to Jane to tease out a bit more of her vision of CCS in California’s future. An edited version of our exchange follows.

Adam: You’ve said that CCS has a critical role in helping California achieve its goal of cutting emissions to 20 per cent of their 1990 levels by mid century. How so?

Jane: I would guess that CCS will not play much of a role in meeting the AB32 goals of 20 per cent reductions, but it may play an important role in meeting the longer-term goal of 80 per cent reductions by 2050. Natural gas generation is a large part of California’s electricity portfolio. If this is to continue and meet the emission reductions, CCS would have to be used whether or not that generation was within state or say, by wire from Wyoming.

In the long term, CCS may play a critical role in solving the fuel problem. We are unlikely to have enough biofuel to meet all of our demands for fuel even if we are successful in cutting demand in half through efficiency measures and electrifying everything we can. CCS could be part of a hydrogen scenario where we get hydrogen from methane and sequester the CO2 generated in this process. Or we might use biomass to make electricity and sequester the emissions to create a negative emission credit to counter the continued use of fossil fuels.

Adam: Yet CCS technologies remain immature and under-commercialized. Starting in what years would CCS need to begin entering into California’s energy mix to play this kind of role? And are we already behind that pace?

Jane: If we start now with demonstration projects, it could be possible to have all new fossil generation be using CCS within a few decades. We need that amount of time to be sure the demonstrations are working.

Adam: What lessons does California’s CCS case have for the transportation challenge in other countries?

Jane: The transportation problem in the developing world is really interesting because it’s not clear that countries like India, for example, should electrify automobiles as a first strategy. If their electricity is made with coal without CCS, electrification is not a clear benefit. If they move to de-carbonize electricity, then electrification of transportation and heat makes much more sense.

Adam: I’ve assumed that developing countries such as China and India ought to leapfrog to electric fleets ahead, and skip the oil-burning stage, to whatever degree possible. You’re suggesting that might not be the best bet for the climate?

Jane: The distance countries like China and India have to go to provide enough electricity at low emissions is huge. If having to run cars on electricity means they add twice as much coal-fired electricity without CCS it would be a disaster. As well, the biomass for biofuel problem is likely to be more acute in these countries as they face serious challenges with food supplies. In the same 2050 period that we are looking to more than double energy supply, we are looking to double food supply. As it takes some time to roll over the fleet of automobiles to electric vehicles, it probably makes sense to move forward with electric transportation at some level as this is what we need in the long term, recognizing it will make the need to decarbonize electricity even more acute.

Adam: Writing for the Institute, the Natural Resource Defense Council’s CCS expert, George Peridas, recently summarized California’s progress as “not a whole lot of progress on the CCS front to showcase since last year, but developments are expected soon”. How could the state reorder its CCS priorities to pick up the pace of technology development?

Jane: The state could get behind a demonstration project for a combined cycle gas plant. There are a lot of people skeptical about CCS. We need to have a concrete example that it works. A big issue in CCS is integrating all the complex industrial processes: electricity generation, capture, and storage. We need experience in actually doing what we theoretically ‘know’ how to do.

For an exploration of the broader report, along with further details on the technicalities of the model used in Jane’s analysis, check out Andy Revkin’s interview with Jane at his Dot Earth blog at the New York Times.

Meet the Change Makers: Steering Ford Toward Sustainability | OnEarth

A focus on efficiency helps Ford pull away from the Detroit pack. Executive Sue Cischke explains how.

In the long history of U.S. automakers, green strategy and profitability have rarely gone hand in hand –until, that is, Henry Ford’s great-grandson made them a centerpiece of his tenure as the company’s president and CEO. But by 2006, in the face of larger woes in the U.S. auto sector, Bill Ford had to step down from day-to-day management of the company (he now holds the title of executive chairman). Just two years later, in 2006, Bill Ford’s green vision looked cannily prescient. With gas prices spiraling skyward that summer, U.S. drivers stampeded away from gas-guzzlers. Soon after, the financial crisis leveled the economy, and car sales collapsed. Unlike its Motown rivals, Ford was able to steer clear of bankruptcy, thanks in large part to savvy financial moves by Bill Ford’s successor, Alan Mulally.

Today, with auto sales looking up again, Sue Cischke (pronounced SIS-key) believes that extending Ford’s commitment to green corporate practices and energy-efficient vehicles will help it outpace global rivals. Cischke entered the auto biz as a mechanical engineer at Chrysler in 1976, in the aftermath of the Arab oil embargo and as high-mileage Japanese imports began to fundamentally reshape the business. These days, she is Ford’s senior-most executive focused on environmental strategy, reporting to CEO Mulally as group vice president, sustainability, environment and safety engineering. One of her top responsibilities is steering Ford’s long-term vehicle development, a vital part of helping the company meet its commitment, unique among its peers, to cut the greenhouse gas emissions of all new Ford vehicles by 30 percent by 2020 (based on a 2006 baseline).

OnEarth contributor Adam Aston recently caught up with Cischke in Detroit to hear how Ford’s green push is unfolding.

Discussions about automakers going green tend to focus on vehicles. But Ford’s been pushing sustainability in its internal operations, too. How do you measure that?

We recognize that our manufacturing operations, in terms of energy use and the materials we consume, have an environmental impact. So our strategy includes increased energy efficiency in both our products and our manufacturing.

Since 2003, we’ve seen energy consumption at Ford’s factories around the globe fall by 29 percent. We’ve won a series of Energy Star awards from the EPA recognizing these efforts. We’ve undertaken countless steps, from small to big, to make these savings. On our assembly lines, for example, thepneumatic tools used to assemble cars have been made smarter, so that they power down quickly when not in use. We’ve also upgraded factory heating and lighting systems. And at some of our paint shops, we’re also converting fumes into fuel to make electricity.

Water is another concern. From 2000 to 2008, we have reduced our water usage by 56 percent. At our Cleveland plant, for example, a program to lower the amount of water used in the casting process, together with efforts to filter and reuse water thoroughly, cut fresh water use by 35 percent in 2009, on top of a 27 percent reduction the prior year. Each year, that’s saving the plant more than $1.2 million in city water costs alone. Worldwide, those kinds of efforts have saved more than 9.5 billion gallons of water at our factories. And we work aggressively to recycle the water in our plants for reuse in manufacturing.

And what about your vehicles?

Ford’s largest environmental impact comes from our products, which is why we have made the commitment to increase fuel efficiency and cut CO2 emissions in every new vehicle we produce. Ford now offers 12 cars, trucks and utility vehicles that lead their segments in fuel economy, including four with certified ratings of 40 mpg or more.

At the 2010 Detroit Auto Show, Ford announced an ambitious range of electrified vehicles. What green technology do you see as having the greatest impact?

In a car, to eke out mileage improvements, it’s about much more than the engine. It’s looking at every component as well as overall design, looking for ways to improve efficiencies. We call it paying attention in exquisite detail. It’s like going on a diet: to lose weight, you can’t just cut down on desserts. You’ve got to exercise more. The change needs to be comprehensive to last.

In the near term, I think Ford’s EcoBoost technology will have the biggest impact because it is an affordable fuel-economy technology that we will offer across most of our lineup. The centerpiece is a four-cylinder engine that delivers the power of a six-cylinder design, boosting gas mileage by up to 20 percent and reducing CO2 by as much as 15 percent. We use turbochargers and direct injection of the gasoline at higher pressures to help achieve these gains.

The approach makes other improvements possible, too. A smaller engine is lighter, so we can downsize other parts on the car — smaller brakes, lighter power-steering motors, and less rugged transmissions, for example — without sacrificing performance.

You’ve said that improving the efficiency of Ford’s entire product line with steps like EcoBoost — rather than the development of a particular advanced hybrid or electric technology — will be the company’s biggest impact. Why?

Because we developed EcoBoost and related design enhancements at a time when the industry was throwing out attention-getting, high-tech prototypes like EVs and plug-in hybrids. Those are important technologies, but will sell in small numbers for some while. We wanted a solution that was more holistic and mainstream.

It doesn’t have the same pizzazz, but because this [EcoBoost] technology will make its way into nine out of 10 of our models within a few years, most of the cars we sell will have the option to be up to 20 percent more fuel-efficient. We are adding more EVs and hybrids too.

In the near term, selling larger numbers of more efficient, affordable gasoline engines will have a bigger impact in reducing CO2 than the much smaller volume of electric vehicles.

In July, President Obama announced a landmark agreement with the auto industry to boost average fuel efficiency to 54.5 miles per gallon, for the model year 2025. In talks with lawmakers, car manufacturers have long fought to stop, delay or reduce such an increase, as they did during recent negotiations. For all the talk about greening cars, why has it been so hard for industry to change its tactics?

We look at affordability and higher mileage goals and realize we can’t just force certain technology onto consumers. When we started the first serious push for fuel economy back in the ’70s, consumers were disappointed with cars that were so underpowered they could barely get out of their own way.

That said, much has changed. In the past, the government would throw out a new mileage number and the industry would say, “No,” and the relationship was much more adversarial.

Today, we recognize efficiency as a strong reason for consumers to buy a Ford. It’s a competitive advantage for us. We are committed to improving the fuel efficiency of every new product we bring to market, but in terms of regulations, we still believe the agencies setting standards need to understand there is not a single technology solution, and that the technology advances we employ must remain affordable for car buyers.

In your role, how do you make sure that the company isn’t just paying lip service to sustainability but is getting actual, measurable results?

The thing is, the company that figures this all out is going to be the most successful. That’s a powerful incentive to get the strategy right. It’s easy for a company to project a vision and talk about the future. We’ve found it more useful to do what we need to do, and then talk about it.

Frankly, with all the noise out there about the financial troubles in the auto sector in recent years, it’s been hard for our green offerings to get the attention I think they deserve.

Our momentum is building. We’ve had a highly successful launch of our EcoBoost technology. The Escape Hybrid SUV has been on the market since 2004. The Fusion Hybrid joined the line up in 2008. And we recently announced we are bringing a new hybrid, a plug-in hybrid, and two all-electric vehicles to market within the next two years.

What does the future hold for Ford’s lineup — will it be all-electric?

It’s important to recognize that there is room for an entire range of technologies, but in terms of electrified vehicles (EVs), we see a stronger future for hybrids and plug-in hybrids. A plug-in hybrid can be charged overnight and run on batteries until they’re depleted, before switching over to a gas engine.

If I look into a crystal ball, we’re looking for two breakthroughs: battery costs have to come down as more EVs are sold, and we’re looking for new, better battery technology that will help increase driving range. Without both of those, I’m not certain whether drivers’ concerns about running out of battery power can be overcome for EVs that don’t have a traditional engine as a backup.

That’s why we’ve also focused on charging infrastructure, improving both charging speed and encouraging the development of more sites where drivers can re-charge outside their homes. We expect most people will charge at home, but we also believe consumers will become more comfortable with the concept of electric vehicles when there are a lot more places to plug them in.

In a company with some 160,000 employees around the world, simply delivering the message that sustainability is a priority seems daunting. How has Ford done that?

Our CEO Alan Mulally saw my background and appointed me to head up sustainability. Given that I started out as an engineer, his decision reinforced that the sustainability factors are woven into the earliest stages of our design process all the way through manufacturing.

Day to day, one of the ways we keep the organization’s many moving parts in sync is via a sustainability mobility governance group, which includes senior executives in charge of developing new products, R&D, marketers and others. The issues we evaluate and prioritize there help guide Ford’s highest, board-level discussions of automotive strategy.


Sidebar: Truth Squad

Checking industry claims with NRDC’s sustainability experts

Alone among its Motown rivals, Ford outran bankruptcy during the fiscal crisis. For this and for developing a genuinely greener lineup of hybrids, electric vehicles and higher mileage cars, Ford deserves praise, said Roland Hwang, NRDC’s transportation program director in San Francisco. For example, under CEO Alan Mulally, Ford has re-geared its product offering to emphasize fuel-saving options across more of its offerings. In mid-September, it ended production of the Crown Victoria sedan, a fuel-economy laggard that averaged just 16 mpg in the city.

The broad shift has proven Ford can make money selling more efficient, in some cases smaller, vehicles, said Hwang. “Ford’s return to profitably this year has been impressive,” he said, and unlike past years, “earnings weren’t driven by pickups or SUVs.” Yet this fiscal resilience cast the company in a peculiar role: as de facto leader of the automotive industry’s opposition to the White House’s push for higher mileage standards. With the federal government holding about one-third of GM stock, and nearly a tenth of Chrysler’s, Ford emerged as the industry’s flag carrier.

In May, Mulally personally lobbied Washington lawmakers to bar California from setting higher standards independent from federal rules. And behind the scenes, Ford’s top lobbyists led a push to soften the new standard, known as Corporate Average Fuel Economy (CAFE). “These lobbying efforts run counter to its progress with greener vehicles,” said Hwang. In early July, the auto industry and the Obama Administration settled on a figure of 54.5 mpg by 2025, up from around 30 mpg today. A month later, Ford responded to the tougher rules with a plan to join forces with Toyota, its top international rival, to co-develop gas-electric hybrid systems for SUVs, pickups and other light trucks. Under past mileage rules, this so-called light truck category has been granted loopholes that tighten under the new standard.

There are competitive reasons for the tie-up too. The world’s other two top auto markets — China and Europe — are pushing towards mileage standards more stringent than proposed U.S. rules.  Adds Hwang: “Ford knows there’s a solid business reason to be ready sooner than later with high mileage solutions.” — Adam Aston


URL for the original story: http://www.onearth.org/article/change-makers-ford-sustainability

Exploring alternative ways to capture carbon using enzymes | Global CCS Institute

CO2 Solution, in Quebec City, Canada is continuing its work to develop biology-based carbon capture technologies with Codexis, based in Redwood City, Calif.

The renewed partnership between CO2 Solution and Codexis, helped pave the way for the duo to establish a collaboration agreement with an unnamed global leader in energy and infrastructure projects. The collaboration agreement covers the development and testing of a pilot scale system for coal-fired power plants.

The process being developed by CO2 Solution and Codexis is adapted from a naturally occurring enzyme, carbonic anhydrase, which occurs in humans and other mammals and plays a crucial role in the transfer of carbon dioxide from out blood streams into the lungs to be released during process.

By adapting the enzyme to work within a heavy-duty reactor that can soak up carbon dioxide from industrial and power plant exhaust, the company has created a sort of “industrial lung”. Once the carbon dioxide is captured, the enzyme also assists in concentrating the gas into a pure stream, so it can be stored underground or used in oil recovery.

According to Codexis, its enzymes are functional and stable in relatively inexpensive and energy-efficient solvents for 24 hours at temperatures up to 75 degrees Celsius. In its natural state, the enzyme doesn’t function at these sorts of temperatures; it must do so to be able to process hot exhaust gases from power plants or factories.

The company anticipates that once its enzymes are fully developed, the solvents can cut the energy needed to capture CO2 within a plant by 30%. This improvement, says Codexis, can help lower the cost burden posed by carbon capture to 35% more than conventional power, a significant improvement over than the 80% premium current processes add.

The newly-extended joint development agreement between CO2 Solution and Codexis now lasts until June 30, 2012, or six months after the expiry of any third-party collaborations, whichever is later.

Could natural gas emissions exceed coal? The case for gas with CCS | Global CCS Institute

Though natural gas extracted from shale is the fastest growing energy source for power plants in the U.S., shale gas is now facing fresh challenges, with the release of a new study suggesting the fuel’s carbon intensity is as high as or higher than coal’s.

Given the rapid growth of natural gas, the findings could upend a consensus view that it’s a greener alternative to coal. The natural gas industry maintains that the fuel emits only about half the CO2 of coal, and therefore has promise as a “bridge” from today’s carbon-intensive fuel mix to future low-carbon options. The new findings suggest that, if natural gas emissions are undercounted, there’s greater urgency to develop CCS for natural gas plants, alongside coal.

Already, the low cost of natural gas—along with its low emissions of conventional air pollutants—has led many utilities to shutter older, dirtier coal plants and replace them with gas turbines.  Earlier this week, for instance, the Tennessee Valley Authority (TVA) agreed to a landmark deal with the US Environmental Protection Agency (EPA) to shutter 11 of its most polluting coal plants, replacing some with natural gas.

Yet if shale gas is as carbon intensive as coal, the results of swapouts like these could cause greenhouse gas emissions to actually rise.

“Compared to coal, the footprint of shale gas is at least 20 percent greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years,” Robert Howarth, a Cornell ecologist writes in a pre-publication version of the paper, originally obtained by The Hill newspaper, and which can be viewed here.

The gist of Howarth’s findings has been made public in the past and are already being fiercely debated. The issue has been re-energized since the study is being published in a peer reviewed scientific journal, Climate Science, boosting their credibility.

It’s important to emphasize Howarth’s findings are based on natural gas extracted from shale reserves, rather than natural gas from conventional reserves.

That said, prior analysis, including one by the EPA, have put to the test claims that natural gas emits 50% less green house gases than coal, as is often claimed. Earlier this year, as detailed by ProPublica, the EPA issued analysis (see the report here) that methane leakage during transmission and processing may cut in half the advantage that is frequently attributed to natural gas.

Howarth and his colleagues—Anthony Ingraffea and Renee Santoro, also at Cornell—contend the process of hydraulic fracturing releases far more methane than conventional drilling.  When fluids, which are pumped into the well to crack open shale and release the gas, resurface to be reused, they release large volumes of methane, according to the study. Howarth is quoted by the New York Times, saying:

“…we came up with two things that surprised me. First, I expected the indirect CO2 emissions from trucks moving frac water, the compressors, the drills, etc., to be greater than we found. They are actually pretty small, when you add up all the numbers. And second, the influence of methane is greater than I expected…”

Howarth’s finding could fuel critics of shale gas, especially in Northeast US states, where public anxiety is rising that fracking threatens underground sources of fresh water.

US Senator Bingaman aims to jump-start CCS with a bill addressing liability | Global CCS Institute

All but lost in the din in the effort to pass a federal budget, a bi-partisan senate bill has re-surfaced that breathes fresh hope for U.S. federal support for carbon capture and sequestration, or CCS.

Introduced on March 31, and authored by Democratic Senator Jeff Bingaman of New Mexico, the bill addresses the central question of liability facing new CCS projects.

While carbon dioxide has been used for decades for enhanced recovery in oil bearing rock formations, less is known about how the gas will behave in salt and other geological formations being considered for CCS.

“The liability question is one of the main impediments for the technology to penetrate more widely,” said Salo Zalemyer, an attorney at Bracewell & Giuliani Environmental Strategies Group in Washington who I spoke with about the bill’s prospects.

“And ultimately that technology hasn’t been adequately tested out yet.” Without some liability shield in place, at least for early movers, progress will be slowed, he said.

Senate bill S.699 authorizes the Energy Dept to set up agreements, providing technical and financial support, for up to ten large-scale CCS projects. Qualified projects would inject at least 1 million tons of carbon dioxide from industrial sources.

David Wagner, a lawyer at Environmental Law Review points out, that besides laying out liability terms, the bill also outlines procedures for long-term management of CCS sites:

To pave the way, proposed bill offers liability protection and federal indemnification for the CCS demonstration projects. Under the bill, DOE is authorized to indemnify projects up to $10 billion for personal, property and environmental damages that might be above what is covered by insurance or other financial assurance measures. Upon receiving the closure certificate for the injection site, the site may be turned over to the federal government for long-term site management and ownership. The proposed bill also outlines criteria for site closure certification and includes provisions for siting the demonstration projects on public land. In addition, it would establish and fund a CCS training program for state regulators.

The bill enjoys bi-partisan support from other Senators from big energy states. In addition to Bingaman, DemocratJay Rockefeller (West Virginia) signed on. The Republican co-sponsors are John Barasso (Wyoming) and Lisa Murkowski (Alaska).

Prospects for passage are typically murky at this early stage.

This is Bingaman’s second try with CCS: The proposed law is similar to a bill he sponsored in 2009. With bipartisan co-sponsors S. 1013 made it out of committee to the Senate floor, but didn’t make the cut with a broader energy legislative package later that year.

Bingaman’s 2011 do-over version has been referred to the Senate Committee on Energy and Natural Resources, and if it proceeds would next face a public hearing at an uncertain date in the future.

Officially, S.699 is titled: “A bill to authorize the Secretary of Energy to carry out a program to demonstrate the commercial application of integrated systems for long-term geological storage of carbon dioxide, and for other purposes.”

Check out the full text here, S.699.IS.

Capturing carbon with sawdust | Global CCS Institute

Dead plants may work as well as living plants in mopping up carbon dioxide from admissions, a duo of Spanish scientists has found.

Reporting for the Royal Society of Chemistry on Mar 18, Yaundi Li writes that sawdust is showing promise as a porous solid, able to absorb carbon dioxide in its pores. Other solids, such as zeolites, are already used in this way, but most are hard to fabricate and can absorb only about 3 mmol of carbon dioxide per gram (3mmol CO2/g).

A research group at Spain’s National Institute of Carbon in Oviedo have been able to convert sawdust into a lower cost material that absorbs up to 50% more of the greenhouse gas per volume—potentially the largest ever carbon uptake at room temperature, in fact.

I’ll leave it to Yi to describes the process:

The two step synthesis involves hydrothermal carbonisation of the sawdust, creating a hydrochar, which is then activated using potassium hydroxide. The KOH treatment creates pores in the sawdust structure by oxidation of carbon and carbon gasification from K2CO3 decomposition. These pores are responsible for the material’s uptake capabilities, bestowing it with a capacity as high as 4.8mmol CO2/g. In addition, [the] material has good selectivity for CO2 over N2, fast adsorption rates and can be easily regenerated.

More work must be done in advance of commercialization. But the find is promising given that raw material is plentiful and the fabrication process is “not complex” according to Antonio Fuertes, the lead researcher, as quoted in the article.

Caption: Magnified image of sawdust before (left) and after
(right) being heated and activated showing the pores, via RSC.org.

For the serious carbon scientists I know we have here in the GCCSI community, I waited until the end for the serious technical stuff, so as not to scare off too many layfolk. Here’s the abstract for Sevilla and Fuertes’ study. For more, click here to go to the full journal citation at Energy & Environmental Science.

Sustainable porous carbons have been prepared by chemical activation of hydrothermally carbonized polysaccharides (starch and cellulose) and biomass (sawdust). These materials were investigated as sorbents for CO2 capture. The activation process was carried out under severe (KOH/precursor = 4) or mild (KOH/precursor = 2) activation conditions at different temperatures in the 600–800 °C range. Textural characterization of the porous carbons showed that the samples obtained under mild activating conditions exhibit smaller surface areas and pore sizes than those prepared by employing a greater amount of KOH. However, the mildly activated carbons exhibit a good capacity to store CO2, which is mainly due to the presence of a large number of narrow micropores (<1 nm). A very high CO2 uptake of 4.8 mmol·g-1 (212 mg CO2·g-1) was registered at room temperature (25 °C) for a carbon activated at 600 °C using KOH/precursor = 2. To the best of our knowledge, this result constitutes the largest-ever recorded CO2 uptake at room temperature for any activated carbon. Furthermore, we observedthat these porous carbons have fast CO2 adsorption rates, a good selectivity for CO2–N2 separation and they can be easily regenerated.